Introduction
We are planning a trip to national parks. With so many adventures to choose from, I thought it would be a good idea to scrap national park information from websites and use the scraped data to build a national park recommendation system for myself. The idea is pretty simple: 1) scraping national park features from websites; 2) EDA & data wrangling 3) building models based on the scraped data 4) evaluating and enjoying the results. I use both Scrapy and Beautiful Soup to scrape park information from websites. The websites that I scrape information from are Wikipedia and TripAdvisor. All codes can be found at https://github.com/Wann-Jiun/nycdsa_project_3_web_scraping.
Wikipedia Web Scraping Using Scrapy
First, let's have an overview of the parks in US. I use Scrapy to scrape park information from Wikipedia. Scrapy is a web scraping framework, written in Python. A Scrapy project is built around ‘spiders’, which are self-contained crawlers. The crawlers will follow a set of instructions to scrape information from websites. The information that I scrape from Wikipedia consists of park name, location, date built, park size, number of visitors (2014). After scraping the data, I perform some data wrangling for EDA at the next stage of analysis.
Let's see which state has the most national parks. I group by the state information and plot the result. The figure shows that California has the most national parks (9). I guess it's not surprising. Let's see if we can find any interesting facts from the data. I also count the mean of the total number of visitors in each state. The figure shows that Tennessee has the most visitors in 2014. It's very interesting since there is only one national park (Great Smoky Mountains) in Tennessee.
TripAdvisor Web Scraping Using Beautiful Soup
Now, let's consider scraping more information about national parks. I use Beautiful Soup to scrape date from TripAdvisor. Beautiful Soup is a Pyhton package designed for web scraping and easy to use. The information I scrape includes park name, review star, number of reviews, location, park feature (hiking trails, valleys, volcanoes, etc.), url links.
The features are fed into the k-means clustering algorithm to explore the underlying structure of the park data. k-means clustering aims to partition observations into k clusters in which each observation belongs to the cluster with the nearest mean and the closest similarity. Using k-means clustering, we are able to recommend similar parks to user based on the input that the user provides.