Welcome to MongoDB workshop
ParksNYC.json is located in parksnyc-tennis folder
mongoimport to import the dataset
At the terminal, use: mongoimport -d tennis -c ParksNYC --type json --drop < ParksNYC.json
//import (to be run in mongo shell) mongoimport -d tennis -c ParksNYC --type json --drop < ParksNYC.json //Mongo //show dbs //use tennis //show collections //first command db.ParksNYC.insert( { Prop_ID : "Q900", Name : "Ridge Park", Location : "1843 Norman St.", EstablishedOn: "1/1/1970" }) // as in sql if you run this command twice it will create 2 documents with same details // read specific dacument db.ParksNYC.find( {Name : "Ridge Park" }) // read all documents db.ParksNYC.find() // read first document db.ParksNYC.findOne() // find specific document // find specific fields in all documents db.ParksNYC.find({ },{ Name: 1 }) db.ParksNYC.find({ },{ _id: 0, Name: 1 }) //Find documents meeting specific conditions db.ParksNYC.find( { Courts: { $gt: 5, $lte: 8} } ) // regular expression db.ParksNYC.find({ Name: /^F/ }) // update (insert) field conditional on other field criteria db.ParksNYC.update({Prop_ID : /^X/ }, {$set: { "Boro":"Bronx"}},{ multi: true }) db.ParksNYC.findOne({Prop_ID : /^X/ }) // update conditional on field criteria $push db.ParksNYC.update( { Name : "Van Cortlandt Park"}, { $push: { Tennis_Type: "Clay" } } ) db.courts_b2.find({"Prop_ID" : "B129" }) db.ParksNYC.update( { Prop_ID: "B129" }, { $push: { Tennis_Type: "Grass" } }) db.ParksNYC.find() db.ParksNYC.find({"Name" : "Van Cortlandt Park" }) db.ParksNYC.find({Tennis_Type: "Clay"}) db.ParksNYC.find({Tennis_Type: "Grass"}) // update db.ParksNYC.update( { }, { $set: {VisitDate: "1/1/2014" } }, { multi: true } ) db.ParksNYC.findOne() // delete field db.ParksNYC.update( { }, { $unset: {VisitDate: "" } }, { multi: true } ) //delete document db.ParksNYC.remove( { Name:"Ridge Park" }) // to check if doc has been removed db.ParksNYC.find({ Name:"Ridge Park"}) // aggregation framework // sort db.ParksNYC.aggregate( { $sort : { Courts : -1, Accessible: 1 } } ) // limit db.ParksNYC.aggregate( { $limit : 5 } ) //skip db.ParksNYC.aggregate( { $skip : 70 } ) // $group by db.ParksNYC.aggregate( { $group : { _id : "$Accessible", Parks_Number : { $sum : 1 }, Courts_Number : { $sum : "$Courts" } }} ) db.ParksNYC.aggregate([ { $group: { _id: "$Accessible", total: { $sum: "$Courts" } } } ] ) //sum db.ParksNYC.aggregate([ { $group: { _id: null, total: { $sum: "$Courts" } } } ] ) // unwind single document db.ParksNYC.find({ Name: "Mill Pond Park"}) db.ParksNYC.aggregate ([ { "$match": { "Name": "Mill Pond Park" } }, { "$unwind": "$Tennis_Type" } ]) // unwind entire Tennis_Type for collection and group by park db.ParksNYC.aggregate ([ { "$unwind":"$Tennis_Type" }, { "$group": { "_id": { "Name" : "$Name" }, "Surface_Type_Count": { "$sum": 1 } } } ]) //unwind on tennis_type, group by parks and sort by Surface_Type_Count db.ParksNYC.aggregate ([ { "$unwind":"$Tennis_Type" }, { "$group": { "_id": { "Name" : "$Name" }, "Surface_Type_Count": { "$sum": 1 } } }, { "$sort": { "Surface_Type_Count":-1, "Name":1 } } ]) //$unwind on tennis_type, $group by parks , $limit to only top 6 parks, save results in new 'summary' collection db.ParksNYC.aggregate ([ { "$unwind":"$Tennis_Type" }, { "$group": { "_id": { "Name" : "$Name" }, "Surface_Type_Count": { "$sum": 1 } } }, { "$sort": { "Surface_Type_Count":-1, "Name":1 } }, { "$limit":6, }, { $out : "summary" } ]) //check db.summary.find() //exportsummary to csv file //mongoexport -d tennis -c summary --out summary.csv
Apply for the Upcoming NYC Data Science Bootcamp
The first step in becoming a data scientist is to complete your Data Science Bootcamp Application. Just click the button to apply. It's free and will only take you about 5 minutes.