Achieve Real-time Results with Big Data through In-Memory Computing

Achieve Real-time Results with Big Data through In-Memory Computing

Posted by manager

Updated: Nov 12, 2014

Speaker Bio:

Nikita Ivanov is founder and CTO of GridGain Systems, a leading in-memory computing platform. He has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. 
Nikita was one of the pioneers in using Java technology for server-side middleware development. Hi is an active member of Java middleware community and contributor to the Java specification.


We came together for a night of networking with Big Data professionals and learning about leading edge technology that is pushing the envelope of what Big Data can do.

We gave an overview  of general in-memory computing principles and the drivers behind it. Some of the topics covered but not limited to were:

  • General in-memory computing principles and the drivers behind it

  • Popular and emerging use cases for in-memory computing, from financial industry trading platforms to mobile payment processing, online advertising, online/mobile gaming back-ends and more

  • Foundational concepts and terminology, and considerations around any in-memory solution

  • Illustration of how a complete in-memory computing stack like the GridGain Data Fabric combines clustering, high performance computing, in-memory data grids, stream processing and Hadoop acceleration into one unified and easy to use platform


Apply for the Upcoming NYC Data Science Bootcamp

The first step in becoming a data scientist is to complete your Data Science Bootcamp Application.  Just click the button to apply.  It's free and will only take you about 5 minutes.


Apply to NYC Data Science Bootcamp


Topics from this blog: clustering Hadoop Meetup Big Data data

Interested in becoming a Data Scientist?

Answer 3 Simple Questions and Get Immediate Course Recommendations.