Where does our waste go?

Where does our waste go?

Posted by Bettina Meier

Updated: Oct 24, 2019

flickr Image by Jeffrey Beall; Creative Commons Licence: Attribution-NoDerivs 2.0 Generic (CC BY-ND 2.0)

 

The issue of waste management is of increasing interest as we grow aware of the problems posed by the amount of waste that is currently produced and how it is disposed of. What happens to our household waste once it is picked up by our local council? How much does household or industry waste contribute to our overall waste production as a society?

I wanted to look into some of these questions and visualise the types of waste we produce, the routes waste takes to where it is processed, and how it is processed.

For this analysis I chose the Waste Data Interrogator 2018 published by the UK Government, Department for Environment, Food and Rural Affairs, as a resource. This data set contains comprehensive information reported by ~6,000 operators of regulated waste management facilities in England on the quantities and types of waste received as well as on waste sent on to other facilities. The database is restricted to waste management facilities in England as environmental regulation responsibilities for Wales and Scotland are being held by Natural Resources Wales (NRW) and the Scottish Environment Protection Agency (SEPA), respectively.

Waste types are categorised based on the European Waste Catalogue (EWC), a hierarchical list of waste descriptions established by the European Commission. Reporting for the Waste Data Interrogator 2018 resource uses two hierarchical levels: a basic system with three main categories – (1) inert/construction and demolition, (2) household/industrial and commercial, and (3) hazardous. In addition there is a system of higher granularity with specific EWC descriptors.

Looking at the composition of waste received across waste management facilities, 54.2% is Household/Industrial/Commercial, 42.7% Inert/Construction and Demolition waste, and 3.1% hazardous waste, which is defined as waste that is harmful to humans or the environment. At a more detailed level, the five largest waste classes are construction and demolition waste (41%), municipal waste (25.7%), waste and water treatment (24.3%), a category of unspecified waste (2.6%), and agriculture and food processing waste (2.0%). To help users understand the waste numbers in tonnes behind these percentages, the app provides additional tables for all categories.

Panel 1. Contribution of different basic waste classes (top) and detailed EWC classes (bottom) as percentages of the total waste received by waste management facilities in England.

 

A comparison of the three basic waste categories shows not all UK regions handle comparable waste numbers. Essex handled the largest amount of Inert/Construction and Demolition Waste. Great Manchester and Meyerside received more Household/Industrial/Commercial Waste (Panel 2). Tees Valley Unitary Authorities and West Midlands Met Districts processed the largest numbers for hazardous waste.

Panel 2. Household/Industrial/Commercial waste in tonnes received by different regions.

 

In addition to location differences, waste disposal choices differ for the 3 waste categories. Most, 53.7%, of Inert/Construction and Demolition Waste was recovered, 30.4% went to Landfill and 10.1% was transferred for recovery or disposal (combined: 94% of all Inert/Construction and Demolition Waste). In comparison a lower proportion of Household/Industrial/Commercial Waste went to Landfill (13.5%), while 13.7% required treatment prior to disposal (Panel 3). As expected, hazardous waste required the largest processing of waste prior to disposal (24.7%).

Interestingly, a significant proportion of waste is being transferred from the receiving waste management facilities for disposal or recovery, encompassing 20% of all Household/Industrial/Commercial and Hazardous Waste and 12% of Inert/ Construction and Demolition Waste.

Panel 3. Breakdown of waste disposal procedures for Household/Industrial/Commercial waste.

 

To gain a better understanding of the waste routes, information on waste origin and respective receiving waste disposal sites can be reviewed as both - general waste categories and at a more detailed level. Here visualised the amount of Household/ Industrial/Commercial waste (top) and more specifically of municipal waste (bottom) from Aberdeenshire received by various waste disposal regions (Panel 4).

Panel 4. Breakdown of waste disposal procedures for Household/Industrial/Commercial waste.

 

My app also includes a map for a more intuitive visualisation of the distances and routes waste travels from its origin to its site of disposal.

Panel 5. Visualisation of waste origin (green dot) and respective waste disposal sites (red dots) across all waste types.

 

Overall, waste travels large distances prior to disposal. Additionally, over 20% of household and hazardous waste is currently being transferred on from the receiving waste disposal site for disposal or recovery elsewhere. It would be interesting to understand if this is due to certain features of a specific waste subgroup and could be identified at the site of origin, due to capacities of waste disposal sites, or other factors.

Please feel free to go to my shiny app to explore UK waste information details or locations of your interest.

 

Future Directions 

I would like to integrate waste data information from the NRW, SEPA and the Northern Ireland Environment Agency (NIEA) to gain a view on the UK-wide waste management. To obtain an understanding of how waste management has changed over the years, waste information from previous years for which information is provided by the UK government could be included. Enriching the data underlying my Shiny app with information on capacity and possible specialisation of UK waste disposal sites could provide useful insights for future waste management decisions.

Bettina Meier

Bettina Meier is a NYC Data Science Fellow with a PhD in biochemistry/molecular biology and experience in Cancer research, Genetics, and NGS data analysis.

View all articles

Topics from this blog: Student Works R Shiny

Interested in becoming a Data Scientist?

Get Customized Course Recommendations In Under a Minute